Энциклопедия АСУ ТП Спонсор проекта: Skip Navigation LinksЭнциклопедия АСУ ТП : 4 Измерительные каналы : 4.2 Многократные измерения : 4.2.2 Точность и продолжительность измерений Соспонсор:




Робот BotEyes




Промышленные контроллеры RealLab!

4.2.2. Точность и продолжительность измерений

Рис. 4.5. Коррелированная (вверху) и некоррелированная (внизу) случайная погрешность измерения; , - средние значения за время измерения и

При использовании описанной выше процедуры усреднения результатов измерений никак не учитывалось, за какое время выполняется серия измерений, поскольку предполагалось, что погрешность является некоррелированным (белым) шумом. Ниже будут рассмотрены эффекты, которые возникают в реальных условиях, когда шум измерений является цветным. Попутно станет ясно, почему точные измерительные приборы работают медленно.

Измерительные каналы средств автоматизации обычно являются частью систем, компоненты которых распределены в пространстве и соединены между собой кабельными линиями. Поэтому на них воздействует весь спектр помех, имеющихся в конкретной электромагнитной обстановке. Основными компонентами случайной погрешности, вызванной помехами, являются белый шум, фликкер (1/f) шум и относительно узкополосные помехи от работающего электрооборудования, передатчиков и естественных источников электромагнитного излучения.

Пример одной реализации белого шума (некоррелированной погрешности измерения) показан на рис. 4.5, внизу. Характерной его особенностью является то, что при изменении масштаба по оси времени внешний вид графика не изменяется, уменьшается только среднеквадратическое значение шума вследствие уменьшения ширины временного окна наблюдения.

В отличие от этого, график реализации коррелированного шума изменяет свой внешний вид в зависимости от ширины окна наблюдения (рис. 4.5, вверху). Коррелированный шум с заданной автокорреляционной функцией можно получить из белого, пропустив его через фильтр с заранее рассчитанной передаточной характеристикой.

Многократные измерения с усреднением всегда выполняются на конечном интервале времени . Если случайная погрешность не коррелирована, то ее математическое ожидание равно нулю и не зависит от величины интервала (рис. 4.5) и момента начала измерения. Поэтому усреднение по формуле (3.2) может дать неограниченное уменьшение случайной составляющей погрешности измерений с ростом числа измерений.

Если же этот интервал усреднения меньше времени корреляции (см. рис. 4.5, вверху), то на каждом отдельно взятом интервале усреднения или получим разные значения погрешности. В отличие от белого шума, погрешность среднего арифметического при увеличении количества измерений будет стремиться к некоторому значению , (рис. 4.5, вверху), отличному от нуля. Поэтому формула (3.2) перестает быть справедливой.

Поскольку в реальных измерениях всегда присутствует, по крайней мере, фликкер-шум (что является фундаментальным законом природы [Букингем]), который делает шум измерений отличным от белого, то усреднение измерений не может снизить случайную составляющую погрешности до нуля. Кроме того, в цифровых средствах измерений всегда присутствует помеха с частотой тактового генератора, которая придает окраску белому шуму.

Рис. 4.6. Измерения в разные моменты времени   эквивалентны измерению в один и тот же момент времени , если использовать линию задержки на и

Предположим, что измерения выполняются в течение конечного промежутка времени (т. е. во временном окне шириной ) и за это время выполняется измерений с равными интервалами между ними, после чего находится среднее значение (4.39). Предположим для простоты, что измеряемая величина равна нулю, т.е. в результате измерений мы получаем только величину случайной погрешности, которую обозначим .

Найдем среднеквадратическое отклонение погрешности . Для этого выполним множество измерений сериями по , выполняя усреднение в пределах каждой серии. В результате получим множество значений . style='color:red'>

Измерение будем выполнять в моменты времени (рис. 4.6, слева). Обратим внимание, что измерение в моменты времени эквивалентно измерению в один и тот же момент времени (рис. 4.6, справа), если использовать линии задержки, которые будут сдвигать реализацию случайного процесса на . Поэтому результат усреднения измерений, выполненных за время можно записать в виде

,

(4.46)

где - момент времени выполнения измерений.

Функцию можно описать с помощью спектральной плотности мощности, для чего сначала найдем ее Фурье-изображение:

==,

(4.47)

где сначала использована замена переменной , затем введено обозначение Фурье-изображения рассматриваемой случайной погрешности .

Полученное выражение можно записать в виде

,

(4.48)

где

.

(4.49)

Таким образом, процесс усреднения можно рассматривать как прохождение случайного процесса через усредняющий фильтр с передаточной характеристикой (4.49). Поскольку вследствие симметрии Фурье изображений в (4.48) относительно оси ординат , то, умножая левую и правую часть этого выражения на соответствующие части в (4.48). получим:

,

(4.50)

откуда

.

(4.51)

Пользуясь определением спектральной плотности мощности (4.15), из последнего выражения получим

,

(4.52)

где и - спектральные плотности мощности случайной составляющей погрешности до процесса усреднения и после.

Рассмотрим передаточную функцию усредняющего фильтра (4.49). Используя формулу суммы членов геометрической прогрессии , ее можно записать в виде

=

(4.53)

Пользуясь соотношением , окончательно получим

.

(4.54)

Выражение (4.54) является передаточной функцией цифрового sinc-фильтра [Сергиенко], т. е. усреднение измерений, полученных в точках, отстоящих друг от друга на , эквивалентно цифровой фильтрации в прямоугольном окне шириной . В результате фильтрации ослабляются спектральные составляющие погрешности измерений, расположенные выше граничной частоты фильтра.

Дисперсию погрешности измерений можно найти, интегрируя спектральную плотность мощности погрешности по всей полосе частот, от 0 до (см. (4.18)):

.

(4.55)

Это выражение справедливо для погрешности с любой спектральной плотностью. Предположим сначала, что погрешность является белым шумом, т.е. . Тогда, подставляя (4.54) в (4.55), получим

= =,

(4.56)

откуда

.

(4.57)

Это выражение совпадает с ранее полученным выражением (3.2), поскольку использовано предположение о преобладании белого шума. Таким образом, усреднение однократных измерений при белом шуме уменьшает погрешность в раз.

Предположим теперь, что случайная составляющая погрешности измерений обусловлена смесью белого шума со спектральной плотностью и фликкер-шума со спектральной плотностью , где - константа, определяемая экспериментально (рис. 4.7). Тогда спектральную плотность мощности погрешности можно выразить как

.

(4.58)

Найдем частоту , на которой оба компонента шума одинаковы (рис. 4.7):

, откуда .

(4.59)

Рис. 4.7. Спектральная плотность мощности погрешности измерений в виде смеси белого и фликкер-шума

При спектральная плотность мощности (4.58) стремится к бесконечности, поэтому интеграл (4.55) для фликкер-шума расходится. Однако, если учесть, что измерительные каналы систем автоматизации имеют режим автокалибровки, то низкочастотные компоненты фликкер-шума будут подавлены. Это позволяет выбрать ненулевую нижнюю границу спектра фликкер-шума, равную . Если калибровка в процессе эксплуатации прибора не выполняется, то величина будет определяться межповерочным интервалом средства измерений.

Многократные измерения можно рассматривать как процесс дискретизации шума. Поскольку согласно теореме Котельникова для сохранения информации в дискретизированном сигнале частота отсчетов должна быть не менее удвоенной верхней частоты спектра сигнала, а шум имеет неограниченный спектр, то условие теоремы не выполняются и спектр шума после дискретизации будет сильно искажен вследствие алиасного эффекта. Однако, благодаря некоррелированности белого шума его отсчеты в любые моменты времени будут некоррелированы между собой, т.е. при дискретизации белого шума получается также белый шум. Наложение спектров вследствие алиасного эффекта также не придает окраску белому шуму, поскольку белый шум описывается функцией .

Спектр фликкер-шума после дискретизации в общем случае будет сильно искажен и будет представлять собой сумму сдвинутых друг относительно друга спектров исходного шума (см. раздел "Алиасные частоты, антиалиасные фильтры" и формулу (4.97)). Однако, чтобы упростить анализ, воспользуемся тем, что в области частот преобладает белый шум, а при - фликкер-шум. Тогда можно считать, что спектр фликкер-шума ограничен частотой , а частота дискретизации всегда больше , т. е. условия теоремы Котельникова выполнены и спектр фликкер-шума не искажается. Дисперсию погрешности измерений в условиях преобладания фликкер-шума можно найти из соотношения (4.55):

=,

(4.60)

где - нижняя граничная частота фликкер-шума; ; - интегральный косинус: , где - постоянная Эйлера.

Нормируем значение на . Тогда графики зависимости коэффициента уменьшения погрешности от количества измерений, построенные по формулам (4.60) и (3.2), будут иметь вид, приведенный на рис. 4.8. При построении графиков использованы следующие исходные данные: , где =24 час., =1 с; параметр при нормировании сокращается. Напомним, что формула (4.60) получена в предположении, что частота измерений превышает величину . Как видим, если при белом шуме усреднение 25 измерений дает снижение погрешности в 5 раз, то при наличии фликкер-шума - только в 1,2 раза.

Рис. 4.8. Изменение коэффициента снижения погрешности измерений в зависимости в от количества измерений при белом шуме, фликкер-шуме (1/f) и их смеси; , =24 час., =1 с при частоте измерений не менее

При белом шуме эффективность усреднения не зависит от ширины усредняющего окна, а зависит только от количества отсчетов (4.57). При наличии фликкер-шума эффективность усреднения начинает зависеть от ширины временного окна , причем увеличение его ширины менее эффективно, чем для белого шума, поскольку спектральная плотность мощности шума 1/f быстро возрастает с уменьшением частоты. Указанный эффект проявляется, в частности, в том, что различие среднего значения 100 результатов измерений, выполненных в течение 10 сек, будут сильно отличаться от среднего 100 измерений, выполненных за 10 суток. Погрешность, обусловленная фликкер-шумом, может быть существенно снижена только при условии, что ширина временного окна превышает величину межкалибровочного интервала средства измерений.

Из вышеизложенного можно сделать следующие выводы.

  1. Увеличение точности путем усреднения результатов многократных измерений ограничено не только систематической составляющей погрешности, но и спектральным составом шума измерений. Фликкер-шум, спектральная плотность мощности которого растет с понижением частоты, ограничивает возможность увеличения точности путем усреднения.
  2. Наиболее практичным способом устранения погрешности, обусловленной фликкер-шумом, является периодическая автокалибровка средства измерений.
  3. Погрешность усреднения в случае некоррелированной погрешности не зависит от ширины временного окна , а зависит только от количества отсчетов .
  4. Усреднение может применяться только при постоянном значении измеряемой величины. В противном случае нужно учитывать динамическую погрешность (см. следующий параграф) или уменьшать ширину окна усреднения.
  5. Усреднение является разновидностью цифровой фильтрации методом "скользящего среднего", поэтому может быть использовано и при наличии шумов объекта измерений. Этой проблеме посвящена специальная литература [Сергиенко].

© RLDA Ltd. info@rlda.ru  Рейтинг@Mail.ru Спонсоры проекта: , а также